Skip to main content

2 posts tagged with "agents"

View All Tags

· 8 min read
Richard

The Model Context Protocol (MCP) is rapidly becoming the standard way for AI assistants like Claude, ChatGPT, and GitHub Copilot to interact with external tools and services. With Laravel MCP, you can expose your Laravel Workflow processes as callable tools that any MCP-compatible AI client can discover, invoke, and monitor.

In this post, we'll show how to build an MCP server that allows AI clients to:

  • Discover available workflows
  • Start workflows asynchronously
  • Poll for status and retrieve results

This creates a powerful pattern where AI agents can orchestrate long-running, durable workflows, perfect for complex tasks that can't complete in a single request.

Why MCP + Laravel Workflow?

Laravel Workflow excels at durable, stateful execution. MCP excels at giving AI clients structured access to external capabilities. Together, they enable:

  • Async AI operations: Start a workflow, continue the conversation, check results later
  • Reliable execution: Workflows survive crashes, retries, and long wait times
  • Observability: Track every workflow through Waterline's dashboard
  • Stateless servers: The MCP server doesn't hold state. Clients track workflow IDs

This mirrors how humans delegate tasks: "Start this report, I'll check back later."

What We're Building

We'll create an MCP server with three tools:

ToolPurpose
list_workflowsDiscover available workflows and view recent runs
start_workflowStart a workflow and get a tracking ID
get_workflow_resultCheck status and retrieve output when complete

Step-by-Step Implementation

1. Install Laravel MCP

composer require laravel/mcp
php artisan vendor:publish --tag=ai-routes

This gives you routes/ai.php where you'll register your MCP server.

2. Create the MCP Server

php artisan make:mcp-server WorkflowServer

Configure it with instructions for the AI:

namespace App\Mcp\Servers;

use App\Mcp\Tools\GetWorkflowResultTool;
use App\Mcp\Tools\ListWorkflowsTool;
use App\Mcp\Tools\StartWorkflowTool;
use Laravel\Mcp\Server;

class WorkflowServer extends Server
{
protected string $name = 'Laravel Workflow Server';
protected string $version = '1.0.0';

protected string $instructions = <<<'MARKDOWN'
This server allows you to start and monitor Laravel Workflows.

## Typical Usage Pattern

1. Call `list_workflows` to see what workflows are available.
2. Call `start_workflow` with the workflow name and arguments.
3. Store the returned `workflow_id`.
4. Call `get_workflow_result` until status is `WorkflowCompletedStatus`.
5. Read the `output` field for the result.

## Status Values

- `WorkflowCreatedStatus` - Workflow has been created
- `WorkflowPendingStatus` - Queued for execution
- `WorkflowRunningStatus` - Currently executing
- `WorkflowWaitingStatus` - Waiting (timer, signal, etc.)
- `WorkflowCompletedStatus` - Finished successfully
- `WorkflowFailedStatus` - Encountered an error
MARKDOWN;

protected array $tools = [
ListWorkflowsTool::class,
StartWorkflowTool::class,
GetWorkflowResultTool::class,
];
}

3. Create the Start Workflow Tool

php artisan make:mcp-tool StartWorkflowTool
namespace App\Mcp\Tools;

use Illuminate\Contracts\JsonSchema\JsonSchema;
use Illuminate\Support\Arr;
use Laravel\Mcp\Request;
use Laravel\Mcp\Response;
use Laravel\Mcp\Server\Tool;
use Workflow\Workflow;
use Workflow\WorkflowStub;

class StartWorkflowTool extends Tool
{
protected string $description = <<<'MARKDOWN'
Start a Laravel Workflow asynchronously and return its workflow ID.

The workflow will execute in the background on the queue. Use the
`get_workflow_result` tool to poll for status and retrieve results
once the workflow completes.
MARKDOWN;

public function handle(Request $request): Response
{
$data = $request->validate([
'workflow' => ['required', 'string'],
'args' => ['nullable', 'array'],
'external_id' => ['nullable', 'string', 'max:255'],
]);

$workflowKey = $data['workflow'];
$args = Arr::get($data, 'args', []);
$externalId = $data['external_id'] ?? null;

$workflowClass = $this->resolveWorkflowClass($workflowKey);

if ($workflowClass === null) {
return Response::error("Unknown workflow: {$workflowKey}");
}

if (! class_exists($workflowClass) || ! is_subclass_of($workflowClass, Workflow::class)) {
return Response::error("Invalid workflow class: {$workflowClass}");
}

$stub = WorkflowStub::make($workflowClass);
$stub->start(...array_values($args));

$status = $stub->status();
$statusName = is_object($status) ? class_basename($status) : class_basename((string) $status);

return Response::json([
'workflow_id' => $stub->id(),
'workflow' => $workflowKey,
'status' => $statusName,
'external_id' => $externalId,
'message' => 'Workflow started. Use get_workflow_result to poll status.',
]);
}

protected function resolveWorkflowClass(string $key): ?string
{
$mapped = config("workflow_mcp.workflows.{$key}");
if ($mapped !== null) {
return $mapped;
}

if (config('workflow_mcp.allow_fqcn', false) && str_contains($key, '\\')) {
return $key;
}

return null;
}

public function schema(JsonSchema $schema): array
{
$workflows = implode(', ', array_keys(config('workflow_mcp.workflows', [])));

return [
'workflow' => $schema->string()
->description("The workflow to start. Available: {$workflows}"),
'args' => $schema->object()
->description('Arguments for the workflow execute() method.'),
'external_id' => $schema->string()
->description('Optional idempotency key for tracking.'),
];
}
}

4. Create the Get Result Tool

php artisan make:mcp-tool GetWorkflowResultTool
namespace App\Mcp\Tools;

use App\Models\StoredWorkflow;
use Illuminate\Contracts\JsonSchema\JsonSchema;
use Laravel\Mcp\Request;
use Laravel\Mcp\Response;
use Laravel\Mcp\Server\Tool;
use Workflow\States\WorkflowCompletedStatus;
use Workflow\States\WorkflowFailedStatus;
use Workflow\WorkflowStub;

class GetWorkflowResultTool extends Tool
{
protected string $description = <<<'MARKDOWN'
Fetch the status and, if completed, the output of a Laravel Workflow.

Use the workflow_id returned by `start_workflow` to check progress.
Once status is `WorkflowCompletedStatus`, the output field contains the result.
MARKDOWN;

public function handle(Request $request): Response
{
$data = $request->validate([
'workflow_id' => ['required'],
]);

$workflowId = $data['workflow_id'];
$stored = StoredWorkflow::find($workflowId);

if (! $stored) {
return Response::json([
'found' => false,
'message' => "Workflow {$workflowId} not found.",
]);
}

$workflow = WorkflowStub::load($workflowId);
$status = $workflow->status();
$statusName = is_object($status) ? class_basename($status) : class_basename((string) $status);
$running = $workflow->running();

$result = null;
$error = null;

if (! $running && str_contains($statusName, 'Completed')) {
$result = $workflow->output();
}

if (! $running && str_contains($statusName, 'Failed')) {
$exception = $stored->exceptions()->latest()->first();
$error = $exception?->exception ?? 'Unknown error';
}

return Response::json([
'found' => true,
'workflow_id' => $workflowId,
'status' => $statusName,
'running' => $running,
'output' => $result,
'error' => $error,
'created_at' => $stored->created_at?->toIso8601String(),
'updated_at' => $stored->updated_at?->toIso8601String(),
]);
}

public function schema(JsonSchema $schema): array
{
return [
'workflow_id' => $schema->string()
->description('The workflow ID returned by start_workflow.'),
];
}
}

5. Create the List Workflows Tool

php artisan make:mcp-tool ListWorkflowsTool
namespace App\Mcp\Tools;

use App\Models\StoredWorkflow;
use Illuminate\Contracts\JsonSchema\JsonSchema;
use Laravel\Mcp\Request;
use Laravel\Mcp\Response;
use Laravel\Mcp\Server\Tool;

class ListWorkflowsTool extends Tool
{
protected string $description = <<<'MARKDOWN'
List available workflow types and optionally show recent workflow runs.

Use this to discover what workflows can be started, or to see
the status of recent executions.
MARKDOWN;

public function handle(Request $request): Response
{
$data = $request->validate([
'show_recent' => ['nullable', 'boolean'],
'limit' => ['nullable', 'integer', 'min:1', 'max:50'],
'status' => ['nullable', 'string'],
]);

$showRecent = $data['show_recent'] ?? false;
$limit = $data['limit'] ?? 10;
$statusFilter = $data['status'] ?? null;

$availableWorkflows = [];
foreach (config('workflow_mcp.workflows', []) as $key => $class) {
$availableWorkflows[] = ['key' => $key, 'class' => $class];
}

$response = [
'available_workflows' => $availableWorkflows,
];

if ($showRecent) {
$query = StoredWorkflow::query()
->orderBy('created_at', 'desc')
->limit($limit);

if ($statusFilter) {
$query->where('status', 'like', "%{$statusFilter}%");
}

$response['recent_workflows'] = $query->get()->map(function ($w) {
$status = $w->status;
$statusName = is_object($status) ? class_basename($status) : class_basename((string) $status);

return [
'id' => $w->id,
'class' => $w->class,
'status' => $statusName,
'created_at' => $w->created_at?->toIso8601String(),
];
});
}

return Response::json($response);
}

public function schema(JsonSchema $schema): array
{
return [
'show_recent' => $schema->boolean()
->description('Include recent workflow runs in response.'),
'limit' => $schema->integer()
->description('Max recent workflows to return (default: 10).'),
'status' => $schema->string()
->description('Filter by status (e.g., "Completed", "Failed").'),
];
}
}

6. Configure Available Workflows

Create config/workflow_mcp.php to whitelist which workflows AI clients can start:

return [
'allow_fqcn' => env('WORKFLOW_MCP_ALLOW_FQCN', false),

'workflows' => [
'simple' => App\Workflows\Simple\SimpleWorkflow::class,
'prism' => App\Workflows\Prism\PrismWorkflow::class,
],
];

This prevents arbitrary class execution. Only mapped workflows are accessible.

7. Register the MCP Server

Update routes/ai.php:

use App\Mcp\Servers\WorkflowServer;
use Laravel\Mcp\Facades\Mcp;

Mcp::web('/mcp/workflows', WorkflowServer::class);

Connecting AI Clients

VS Code / GitHub Copilot

Create .vscode/mcp.json in your project:

{
"servers": {
"laravel-workflow": {
"type": "http",
"url": "http://localhost/mcp/workflows"
}
}
}

This configuration works for both local development and GitHub Codespaces. In Codespaces, the VS Code server runs inside the container, so localhost correctly reaches the Laravel server without needing public ports or the *.app.github.dev URL.

After reloading VS Code (Cmd/Ctrl+Shift+P → "Developer: Reload Window"), Copilot can use the workflow tools directly in chat.

Real-World Usage

Once connected, you can have natural conversations with your AI assistant:

You: "What workflows are available?"

AI: calls list_workflows "I found 2 workflows: simple and prism."

You: "Start the prism workflow"

AI: calls start_workflow "Started workflow ID 42. I'll check its status."

AI: calls get_workflow_result "The workflow completed! Here's the generated user profile: { name: 'Elena', hobbies: [...] }"

This creates a seamless experience where AI assistants can orchestrate complex, long-running operations while keeping the user informed.

What Makes This Pattern Powerful

  • Durability: Workflows survive server restarts and network failures
  • Async by design: AI clients don't block waiting for completion
  • Observable: Every workflow is tracked in Waterline's dashboard
  • Secure: Whitelist-based workflow access prevents arbitrary execution
  • Stateless MCP: The server holds no state. Clients track workflow IDs

Try It Now in Your Browser

This MCP integration is included and pre-configured in the Laravel Workflow Sample App.

To try it:

  1. Open the sample-app repo on GitHub
  2. Click CodeCodespacesCreate codespace on main
  3. Wait for the environment to build
  4. Setup the app and start the queue worker:
    php artisan app:init
    php artisan queue:work
  5. Ask your AI to list and run workflows!

Where to Go From Here

You can extend this pattern to:

  • Parameterized workflows: Pass user input to workflow arguments
  • Webhook notifications: Push completion events instead of polling
  • Workflow signals: Let AI clients send signals to waiting workflows
  • Progress streaming: Use SSE to stream workflow progress in real-time
  • Multi-step agents: Chain multiple workflows together in a conversation

The combination of Laravel Workflow's durable execution and MCP's tool protocol creates a foundation for truly capable AI agents that can handle real-world complexity.

· 4 min read
Richard

captionless image

Laravel Workflow is a powerful tool for orchestrating long-running, stateful workflows in PHP. Paired with PrismPHP, it becomes a compelling foundation for building reliable AI agents that not only generate structured data but verify and retry until results meet strict real-world constraints.

In this post, we’ll show how to use Laravel Workflow + Prism to create an agentic loop that:

  • Generates structured data using an LLM
  • Validates the result against custom rules
  • Retries automatically until the result passes

You can try this exact workflow right now in your browser with no setup or coding required. Just click the button in the Laravel Workflow Sample App and launch a GitHub Codespace to run it.

What We’re Building

We’ll create a workflow that asks an LLM to generate a user profile with hobbies. Then we’ll validate that:

  • The name is present
  • At least one hobby is defined
  • The name starts with a vowel

If the result fails validation, we loop back to the LLM and regenerate. All of this is durable, asynchronous, and tracked through stateful events.

Step-by-Step Example

  1. Console Command to Trigger the Workflow
use App\Workflows\Prism\PrismWorkflow;
use Illuminate\Console\Command;
use Workflow\WorkflowStub;

class Prism extends Command
{
protected $signature = 'app:prism';

protected $description = 'Runs a Prism AI workflow';

public function handle()
{
$workflow = WorkflowStub::make(PrismWorkflow::class);
$workflow->start();
while ($workflow->running());
$user = $workflow->output();

$this->info('Generated User:');
$this->info(json_encode($user, JSON_PRETTY_PRINT));
}
}
  1. Define the Workflow Logic
use Workflow\ActivityStub;
use Workflow\Workflow;

class PrismWorkflow extends Workflow
{
public function execute()
{
do {
$user = yield ActivityStub::make(GenerateUserActivity::class);
$valid = yield ActivityStub::make(ValidateUserActivity::class, $user);
} while (!$valid);

return $user;
}
}

This is a classic agent loop. If validation fails, we prompt again automatically.

  1. Generate Structured User Data with PrismPHP
use Prism\Prism\Prism;
use Prism\Prism\Enums\Provider;
use Prism\Prism\Schema\ArraySchema;
use Prism\Prism\Schema\ObjectSchema;
use Prism\Prism\Schema\StringSchema;
use Workflow\Activity;

class GenerateUserActivity extends Activity
{
public function execute()
{
$schema = new ObjectSchema(
name: 'user',
description: 'A user profile with their hobbies',
properties: [
new StringSchema('name', 'The user\'s full name'),
new ArraySchema(
name: 'hobbies',
description: 'The user\'s list of hobbies',
items: new ObjectSchema(
name: 'hobby',
description: 'A detailed hobby entry',
properties: [
new StringSchema('name', 'The name of the hobby'),
new StringSchema('description', 'A brief description of the hobby'),
],
requiredFields: ['name', 'description']
)
),
],
requiredFields: ['name', 'hobbies']
);

$response = Prism::structured()
->using(Provider::OpenAI, 'gpt-4o')
->withSchema($schema)
->withPrompt('Use names from many languages and vary first initials.')
->asStructured();

return $response->structured;
}
}
  1. Validate Business Logic
use Workflow\Activity;

class ValidateUserActivity extends Activity
{
public function execute($user)
{
if (empty($user['name']) || !is_array($user['hobbies']) || count($user['hobbies']) === 0) {
return false;
}

foreach ($user['hobbies'] as $hobby) {
if (empty($hobby['name']) || empty($hobby['description'])) {
return false;
}
}

// Extra Validation: The user's name must start with a vowel.
if (!in_array(strtoupper($user['name'][0]), ['A', 'E', 'I', 'O', 'U'])) {
return false;
}

return true;
}
}

What Makes This Pattern Powerful

This design pattern is what you’d call a reliable agentic loop:

  • LLM generation via Prism
  • Validation & retry via Laravel Workflow
  • State persistence for crash recovery or inspection
  • Observability via Waterline

It’s perfect for AI applications where accuracy, safety, and traceability are required.

Try It Now in Your Browser

We’ve bundled this workflow into the official Laravel Workflow Sample App, which runs in GitHub Codespaces.

To launch it:

  1. Open the sample-app repo
  2. Click the “Code” button → “Codespaces” → “Create codespace on main”
  3. Wait a few seconds for setup
  4. Set your OPENAI_API_KEY
  5. Run:
php artisan migrate
php artisan queue:work
  1. In a second terminal:
php artisan app:prism

You will see the queue working and eventually see the validated output.

Where to Go From Here

You can easily adapt this pattern to:

  • AI agents for form filling
  • Data scraping and validation
  • Content generation with retry policies
  • Moderation and review queues

Each step remains reliable and traceable thanks to Laravel Workflow’s durable execution model.